Area of a Square

$$
\begin{aligned}
\text { Area } & =\text { side } \times \text { side } \\
& =s^{2}
\end{aligned}
$$

Area of a Rectangle

$$
\begin{aligned}
\text { Area } & =\text { length } \times \text { width } \\
& =l w
\end{aligned}
$$

Area of a Circle

Area $=\pi \times$ radius ${ }^{2}$
 $=\pi r^{2}$

Area of a Parallelogram

$$
\begin{aligned}
\text { Area } & =\text { base } \times \text { height } \\
& =b h
\end{aligned}
$$

Area of a Rhombus

Area $=$ diagonal $1 \times$ diagonal $2 \times \frac{1}{2}$
$=\frac{d_{1} \times d_{2}}{2}$

Area of a Trapezium

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times(\text { parallel side } a+\text { parallel side } b) \times \text { height } \\
& =\frac{1}{2}(a+b) h
\end{aligned}
$$

Area of a Sector

Regent Studies | www.regentstudies.com

Area $=\frac{\theta}{360} \times \pi \times$ radius 2
$=\frac{\theta}{360} \pi r^{2}$

Area of a Triangle

Area $=\frac{1}{2} \times$ base \times perpendicular height
$=\frac{b h}{2}$

Surface Area of a Sphere

$$
\begin{aligned}
\text { Surface Area } & =4 \times \pi \times \text { radius }^{2} \\
& =4 \pi r^{2}
\end{aligned}
$$

Surface Area of a Cylinder

Surface Area $=2 \times \pi \times$ radius $^{2}+2 \times \pi \times$ radius \times height $=2 \pi r^{2}+2 \pi r h$

Volume of a Pyramid

$$
\begin{aligned}
\text { Volume } & =\frac{1}{3} \times \text { area of base } \times \text { height } \\
& =\frac{1}{3} \mathrm{Ah}
\end{aligned}
$$

Volume of a Prism

$$
\begin{aligned}
\text { Volume } & =\text { area of cross section } \times \text { height } \\
& =A h
\end{aligned}
$$

Volume of a Sphere

$$
\begin{aligned}
\text { Volume } & =\frac{4}{3} \times \pi \times \text { radius }^{3} \\
& =\frac{4}{3} \pi r^{3}
\end{aligned}
$$

Volume of a Cone

$$
\begin{aligned}
\text { Volume } & =\frac{1}{3} \times \pi \times \text { radius }^{2} \times h e i g h t \\
& =\frac{1}{3} \pi r^{2} h
\end{aligned}
$$

Area of a Square

Area $=$ side \times side $=s^{2}$

Area of a Rectangle

$$
\begin{aligned}
\text { Area } & =\text { length } \times \text { width } \\
& =l w
\end{aligned}
$$

Area of a Circle

Area $=\pi \times$ radius ${ }^{2}$ $=\pi r^{2}$

Area of a Parallelogram

$$
\begin{aligned}
\text { Area } & =\text { base } \times \text { height } \\
& =b h
\end{aligned}
$$

Area of a Rhombus

$$
\begin{aligned}
\text { Area } & =\text { diagonal } 1 \times \text { diagonal } 2 \times \frac{1}{2} \\
& =\frac{d_{1} \times d_{2}}{2}
\end{aligned}
$$

Area of a Trapezium

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times(\text { parallel side } a+\text { parallel side } b) \times \text { height } \\
& =\frac{1}{2}(a+b) h
\end{aligned}
$$

Area of a Sector

Area $=\frac{\theta}{360} \times \pi \times$ radius 2

$$
=\frac{\theta}{360} \pi r^{2}
$$

Area of a Triangle

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times \text { base } \times \text { perpendicular height } \\
& =\frac{b h}{2}
\end{aligned}
$$

Surface Area of a Sphere

Surface Area $=4 \times \pi \times$ radius 2
 $=4 \pi r^{2}$

Surface Area of a Cylinder

Surface Area $=2 \times \pi \times$ radius $^{2}+2 \times \pi \times$ radius \times height $=2 \pi r^{2}+2 \pi r h$

Volume of a Pyramid

Volume $=\frac{1}{3} \times$ area of base \times height

$$
=\frac{1}{3} \mathrm{Ah}
$$

Volume of a Prism

Volume $=$ area of cross section \times height = $A h$

Volume of a Sphere

$$
\begin{aligned}
\text { Volume } & =\frac{4}{3} \times \pi \times \text { radius }^{3} \\
& =\frac{4}{3} \pi r^{3}
\end{aligned}
$$

Volume of a Cone

$$
\begin{aligned}
\text { Volume } & =\frac{1}{3} \times \pi \times \text { radius }^{2} \times \text { height } \\
& =\frac{1}{3} \pi r^{2} h
\end{aligned}
$$

